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Parasitic capillary waves : a direct calculation 
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As in a previous theory (Longuet-Higgins 1963) parasitic capillary waves are 
considered as a perturbation due to the local action of surface tension forces on an 
otherwise pure progressive gravity wave. Here the theory is improved by: (i) making 
use of our more accurate knowledge of the profile of a steep Stokes wave; (ii) taking 
account of the influence of gravity on the capillary waves themselves, through the 
effective gravitational acceleration g* for short waves riding on longer waves. 

Nonlinearity in the capillary waves themselves is not included, and certain other 
approximations are made. Nevertheless, the theory is shown to be in essential 
agreement with experiments by Cox (1958), Ebuchi, Kawamura & Toba (1987) and 
Perlin, Lin & Ting (1993). 

A principal result is that for gravity waves of a given length L > 5 cm there is a 
critical steepness parameter (AK),  at which the surface velocity (in a frame of reference 
moving with the phase-speed) equals the minimum (local) speed of capillary-gravity 
waves. On subcritical gravity waves, with steepness AK < (AK),, capillary waves may 
be generated at all points of the wave surface. On supercritical waves, with A K >  
(AK),, capillary waves can only be generated in the wave troughs; they are trapped 
between two caustics near the crests. Generally, the amplitude of the parasitic 
capillaries is greatest on gravity waves of near critical (but not maximum) steepness. 

1. Introduction 
There has recently been increased interest in the small-scale structures of wind- 

waves, partly because of the importance of wavelengths of order 1 cm to the remote- 
sensing of the sea surface, but more basically because such short waves are believed to 
affect the large-scale transfers of heat, gases and momentum between the ocean and the 
atmosphere. Laboratory studies by Jahne & Riemer (1990) have shown that parasitic 
capillaries generated by short gravity waves, and not directly by the wind, make a 
significant contribution to the spectrum at these short wavelengths. Since the 
pioneering experiments of Cox (1958) demonstrating the existence of parasitic 
capillaries there has been considerable progress in the numerical calculation of the 
parasitic capillary spectrum, particularly by Watson & McBride (1 993). However, the 
intricacy of their analysis leads one to hope that a simpler and more intuitive approach 
can be found. The present paper is an attempt to see how far an alternative and more 
direct treatment (Longuet-Higgins 1963) can be improved so as to yield a physical 
explanation of the phenomenon. 

From the start it is desirable to clarify the nature of the investigation, since some 
confusion may have been introduced into the subject by a recent paper by Perlin, Lin 
& Ting (1993). We are not here concerned with the propagation of free, unattenuated 
ripples over the surface of longer waves, nor with the existence of steady, space periodic 
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solutions of the inviscid equations of motion such as were found numerically by 
Schwartz & Vanden-Broeck (1979) and by Chen & Saffman (1979, 1980), and which 
can be interpreted as short waves propagated on long waves with the same overall 
phase speed. Neither are we concerned with capillary waves generated at a plunger, or 
other type of mechanical wavemaker. (For a discussion of the experiments of Perlin et 
al. (1993) see $11 below.) The source of energy for parasitic capillary waves is, by 
definition, the gravity waves themselves, and not an external source such as the wind 
or a mechanical wavemaker. 

The physical idea underlying the author’s (1963) treatment of parasitic capillaries 
was that on a steep Stokes wave, where the crest is sharper than the trough, the action 
of surface tension is very uneven, being concentrated mainly near the wave crest. Seen 
in a reference frame moving with the phase-speed, the Stokes wave appears as a steady 
(non-uniform) current opposite to the direction of wave propagation. So surface 
tension should act like a concentrated pressure distribution on the surface of a steady 
current, producing a train of ripples upstream of the pressure, that is on the forward 
slope of the Stokes wave. The energy of the ripples was assumed to be subject to viscous 
decay (Lamb 1932) and to an input of energy by the contraction of the current against 
the radiation stress. It was shown that the amplitude of the ripples was related to the 
maximum curvature of the Stokes profile, that is the curvature at the wave crest. The 
theoretical result was in qualitative agreement with the observations by Cox (1958). 
However, in deriving the theoretical result use was made of the best theory then 
available for steep Stokes waves, namely that of Davies (1951). In this theory the 
curvature at the crest is related ambiguously (and probably incorrectly) to the wave 
amplitude. Hence one quantitative aspect of the theory was in doubt. Since that time, 
and especially in the last ten years, greatly improved methods for calculating steep 
gravity waves have been developed (see $52 and 3). 

Crapper (1970) formulated a somewhat similar theory in which allowance was made 
for the possible finite steepness of the ripples. He too used Davies’ (1951) theory for the 
underlying Stokes wave. However, he made a highly questionable assumption 
regarding the energy input to the ripples. Noting that the overall rate of work done by 
the surface tension T on the fluid equals T K q ,  integrated over the surface, where K is 
the local curvature and qn the inward normal velocity, he assumed that all this energy 
was imparted locally to the ripples. In fact the proportion of energy imparted to the 
ripples must depend upon the breadth b of the pressure distribution relative to the 
wavelength (see $4). The breadth is generally greater than the ripple wavelength. For 
a broad distribution of pressure, the energy imparted to the ripples is relatively small. 
Thus any quantitative agreement between the predicted and observed ripple amplitudes 
is surely coincidental (or, as he expressed it, ‘the ultimate justification of (27) must 
therefore depend on experiment ’). 

It is significant that both Longuet-Higgins (1963) and Crapper (1970) ignored the 
influence of gravity on the short ripples, thereby excluding the possibility of ‘blocking’ 
of the short waves at some point near the crest of the gravity wave as described by 
Phillips (1981) and Shyu & Phillips (1990). 

Further experiments designed to test the theory were performed by Chang, Wagner 
& Yuen (1978). Their conclusion was that the wavelengths of the ripples were fairly 
well predicted by the theory of Longuet-Higgins (1963), but it was impossible to verify 
the prediction of their absolute amplitude because of the difficulty of measuring the 
undisturbed curvature of the wave crest in the presence of short ripples. Ruvinsky & 
Friedman (1981) pointed out the importance of including gravity as well as capillarity 
in the dynamics of the ripples, but they ignored the important variations of the effective 
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gravity g* along the surface of the gravity wave (see $2). Yennakov, Ruvinsky and 
Salashin (1988) published experiments correlating the maximum steepness of the 
ripples with the maximum curvature at the crest of the gravity wave. However, the 
agreement with theory was not close. Ruvinsky, Feldstein & Freidman (1991) proposed 
a different numerical method of calculation using a series expansion, and with a new 
boundary condition, to represent viscous damping of the ripples. A physical 
interpretation of their analysis has been given by Longuet-Higgins (1 992). 

In the present paper we aim to extend and improve the analysis in Longuet-Higgins 
(1963) in the following ways: 

(i) By using a modern and accurate method for calculating the profile of steep 
Stokes waves. This method is described in $02 and 3. For very steep waves, use is made 
of the asymptotic theory of the ‘almost-highest wave’ as developed by Longuet- 
Higgins & Fox (1977, 1978). In particular this gives a credible theory for the curvature 
of the profile in the neighbourhood of the crest, and yields conditions for stability. 

(ii) By including in the ripple dynamics the effects of particle acceleration in the 
Stokes waves. This is done by substituting the ‘effective gravity’ g* in place of the 
ordinary gravity g,  as in the theory of short gravity waves on longer Stokes waves 
(Longuet-Higgins 1985 b, 1987). 

This second step makes it possible to calculate the condition for ‘blocking’ on Stokes 
waves more accurately (see $6)  and to determine, for Stokes waves of a given length 
L, the critical steepness (AK),  at which blocking first occurs. Waves for which AK < 
(AK),  have no blocking and are called subcritical, and those for which AK > ( A m ,  and 
blocking occurs are called supercritical. The generation of parasitic capillaries on a 
subcritical wave is calculated in $7, on a supercritical wave in $8. In the latter case it 
appears there may be trapping of short-wave energy between two blocking points, or 
caustics, in the same wave trough. In either case it is found that the ripple amplitude 
tends to increase as the critical wave steepness is approached, either from above or 
below; apparently the ripples are highly sensitive to the steepness of the gravity wave 
in this neighbourhood. The implications of this phenomenon for the damping of 
gravity waves and for theories of wave generation by wind are discussed in $ 13. 

In $8 1612 we compare the present theory with the laboratory experiments by Cox 
(1958), Ebuchi et al. (1987) and Perlin et al. (1993) and show that they are in essential 
agreement. 

2. Stokes waves of finite amplitude 
We begin with the improved calculation of pure gravity waves on deep water. A 

quick and accurate technique was developed by Longuet-Higgins (1985 a). The 
wavelength being taken as 2n, the free surface is expressed parametrically by 

I 
00 

y = ;Ao + 2 A ,  cos n8, 
n-1 

m 

x = 8+ A,sinn8. 
n = l  

The coefficients A ,  are known to satisfy a certain set of quadratic relations. These may 
be solved numerically for a given value of the wave steepness A K  where K is the 
wavenumber (here K = 1) and A is the wave amplitude: 

A = A , + A , + A , +  .... (2.2) 
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FIGURE 1. Stokes waves on deep water. Wavelength = 2n. Steepness AK = 0.25, 0.30, 0.35 and 
0.40. (a) Surface profiles and (b) surface gradient. 

Examples of profiles calculated in this way for A K =  0.25, 0.30, 0.35 and 0.40 are 
shown in figure 1 (a), and in figure 1 (b) we show the corresponding surface slopes. We 
see that the pattern of slopes tends to become ‘saw-toothed’ as the steepness AK 
increases. 

For calculating the parasitic capillaries we shall need 
(i) the particle velocity U at the free surface in a frame of reference moving with the 

(ii) the curvature K of the free surface which determines the additional stress TK due 

(iii) the effective value g* of gravity felt by the short waves, that is to say 

phase-speed c ;  

to surface tension; 

g* = gCOS 01- K u 2 ,  (2.3) 
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FIGURE 2. Curvature K of the wave profiles in figure 1, as a function of the arclength s. 

where a is the angle of tilt of the surface. The term K U ~  represents the acceleration of 
a fluid particle normal to the surface. 

To find (i) we may simply use Bernoulli’s equation 

u2 = -2gy,  (2.4) 

since in the representation (2.1) the origin is chosen so that the arbitrary constant 
vanishes. To find K we may use 

where a suffix denotes differentiation; K is taken as positive when the surface curves 
downwards. Thirdly, we have 

cos a = x,/(x; + y y .  (2.6) 

In figures 2 and 3 ,  K and g* are plotted against the arclength s measured along the 
surface from the crest (s = 0). It will be seen how in the steeper waves the curvature 
becomes concentrated in a very narrow region round the crest, whereas in the wave 
trough the curvature is almost constant (and negative). The total area under each curve 
vanishes since 

JKds = p z d s  = [a] = 0, (2-7)  

when the integral is taken over one wavelength. 

AK.  The maximum surface gradient is also given. 
The values of K and g* at the wave crest are given in table 1 for selected values of 
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A K  

0.0000 
0.0500 
0.1000 
0.1500 
0.2000 
0.2500 
0.3000 
0.3500 
0.4000 
0.4432 

(dYldX),,, %&,,(deg.) 
0.0000 0.00 
0.0501 2.87 
0.1005 5.74 
0.1518 8.63 
0.2044 11.55 
0.2593 14.54 
0.3177 17.63 
0.3825 20.93 
0.4622 24.81 
0.5860 30.37 

( K / g )  ' Q  

1 .oooo 
0.9487 
0.8944 
0.8364 
0.7736 
0.7043 
0.6251 
0.5291 
0.3942 
0.0000 

€ 

0.7071 
0.6708 
0.6324 
0.5914 
0.5470 
0.4980 
0.4420 
0.3742 
0.2782 
0.0000 

K Q / K  

0.0000 
0.0554 
0.1238 
0.2101 
0.3226 
0.4777 
0.7124 
1.1339 
2.2554 
co 

g;/g 
1 .oooo 
0.950 I 
0.9009 
0.8530 
0.8070 
0.7630 
0.7216 
0.6825 
0.6496 
0.612 

TABLE 1. Parameters of Stokes waves, at different values of the wave steepness AK 

3. Asymptotic theory for steep waves 
When the wave steepness AK approaches its limiting value 

(AK),,, = 0.4432, 

the method of calculation described in 92 loses accuracy, but may be supplemented by 
an asymptotic method due to Longuet-Higgins & Fox (1977, 1978). This becomes 
applicable when 
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FIGURE 4. Limiting form of a wave crest, from Longuet-Higgins & Fox (1977): 
(a) surface elevation and (b)  surface slope. 

U ,  being the particle speed at the crest in the moving frame of reference. It can be 
shown that e is related to the wave steepness AK by 

(AK),,, - AK = 0 . 5 ~ 2  + 0 ( ~ 3 ) ,  (3.3) 

(see Longuet-Higgins & Fox 1978, 95). 
It is shown by Longuet-Higgins & Fox (1977) that as e+O and AK+(AK),, ,  the 

profile of the wave crest approaches a certain limiting form - the ' almost-highest ' wave 
(see figure 4). The limiting form is valid within a distance of order E~ from the rest. The 
particle velocity at the crest itself is found from (3.2) to be 

U, = e(2g/K)'/'. (3.4) 

In figure 5 we show the surface curvature K as a function of the arclength s. The radius 
of curvature at the crest is 5.155e2/K. This leads to a value of the effective gravity g* 
given by 

g* = 0.612g (3.5) 

at the crest, independently of E .  It has been shown by Longuet-Higgins, Cleaver & Fox 
(1994) that the crest of a steady gravity wave becomes unstable when e is less than a 
certain value (see their figure 5) and that this probably corresponds to the lowest 
superharmonic instability of a Stokes wave at AK = 0.4292 (the lowest energy 
maximum), that is when e2 = 0.028 ( E  = 0.167). Hence the theory is not valid beyond 
this point. In practice, it is likely that a gravity wave crest is unstable to finite-amplitude 
perturbations at a steepness somewhat below AK = 0.4292. 
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FIGURE 5. Surface curvature K for the almost-highest wave, as a function of the arclength s. 

4. Capillary-gravity waves due to pressure on a uniform stream 
It will be helpful to consider first the surface displacement due to a continuous 

distribution of pressure acting on the surface of a uniform stream which moves to the 
right with speed U,  as in figure 6.  Relative to the stream, any steady waves of small 
slope must have a wavenumber k related to U by the linear dispersion relation 

Tk2- U 2 k + g  = 0. (4.1) 

There are two distinct regimes, according to whether 

A = U“4gT ( 4 4  

is positive or negative. If d > 0, equation (4.1) shows there are two real wavenumbers 

(4.3) 
1 

2T 
k,, k ,  = - ( U 2  & ( U4 - 4gT)”’). 

We call k ,  and k ,  the capillary (or capillary-gravity) and the gravity (or 
gravity-capillary) wavenumbers respectively. 

As shown by Lamb (1932, $271) a pressure distribution PS(x) concentrated at 
x = 0 gives rise to a surface displacement 

where 

F(x) 
- 2P sink, x, 2P 

c(x) = T(k, - k,) {sin k, x, :} -k T(k,  - k,) 

dk, x>O 

(4.4) 

(4.5) 

with a similar expression for F(x) when x < 0. Numerical calculation (see Lamb 
1932, $271) shows that F(x) is small except possibly close to the origin (see figure 6) .  
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FIGURE 6. Surface disturbance due to a line-pressure acting at x = 0 on a uniform stream, when 
k , /k ,  = 5.  The broken line represents the sine-wave part of (4.4). [After Lamb 1932.1 

Thus we see the disturbance consists essentially of two systems of waves of equal 
amplitude 

2P =- 2 P  - 2P 
a =  

T(k,-k,)  - (U4-gT)1’2 41’2’ 

with the capillary waves upstream and the gravity waves downstream of the origin. 
Now consider the disturbance due to a distributed pressure p,(x) acting on the free 

surface. In general we can considerp,(x) as the sum of a distribution of point-pressures, 
so that by (4.4) the capillary-wave part of the solution can be expressed as 

<(x) = 1: 9 sin k,(x’ - x) dx‘. 

Suppose for example that the pressure distribution p,(x) is given by 

(4.7) 

When the breadth b of this distribution is small, p,(x)  becomes P6(x) as before. Then 
we shall have 

dx’. (4.9) 

At upstream distances x large compared to the breadth b of the pressure pattern, the 
lower limit of integration in (4.9) can be replaced by -cc so that 

dx’ (4.10) 

- 2P 
-- - exp (- bk,) sink, x. (4.1 1) 

Lamb (1932, $271) derives the same result in a different way. One consequence of (4.11) 
is that the energy imparted to the capillary wavetrain is proportional to exp (- 2bk1) 
and depends strongly on the ratio of the breadth of the pressure distribution to the 
wavelength of the capillary waves. When bk, > 2, say, the proportion of energy is very 
small. This is contrary to the assumption made by Crapper (1970) that all the available 
energy from surface tension goes into capillary waves. We may say that the smoothness 
of the pressure distribution will tend to iron out the capillary waves so that only a small 
proportion of the available energy goes into them. 
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FIGURE 7. Capillary waves due to a pressure distribution p ,  = r 1 T b / ( b z + x 2 )  acting on a uniform 
stream of speed U, when 4 g T / U z  = $, and when bk, = 0.1, 1.0,2.0 and 3.0. (a) Surface displacement, 
(b) pressure distribution. 

Some examples of the surface elevation c(x)  as given by (4.9) are shown in figure 7, 
in the typical case k ,  = 5k,, that is 4 g T / U 4  = 0, and when bk, = 0.1, 1, 2 and 3, 
respectively. The strong dependence of the amplitude on bk, is evident. 

There will of course be an expression similar to (4.9) for the gravity waves generated 
by p,(x),  but this is ignored for two reasons: 

(i) The wavelength of the gravity waves is generally much greater than that of the 
corresponding capillary waves. Indeed when we come to consider wave generation by 
pressures near the crest of Stokes waves (see 96) the corresponding gravity waves are 
comparable in length to the original Stokes wave and they cannot be considered any 
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more as short waves propagated over long waves. Though there will undoubtedly be 
some effect on the Stokes wave, such as a slight change in phase-speed and the 
generation of some forced higher harmonics, these must be obtained by a different 
method. 

(ii) In many observations the quantity measured is the surface slope rather than the 
vertical displacement of the free surface. Because of their short wavelength the 
capillary waves make a relatively larger contribution to the surface slope. 

When on the other hand d < 0 ,  (4.2) has no real roots, and the displacement [ tends 
to zero rapidly with increasing 1x1. 

5. Capillary-gravity waves from a point-source on a non-uniform stream 
We shall now consider the generation of capillary-gravity waves by a distribution of 

pressure acting on a non-uniform current U(x),  neglecting at first any deviation of the 
undisturbed surface from the plane y = 0. It is assumed that the current varies 
sufficiently gradually with x that locally the waves appear as on a uniform stream. A 
necessary condition is that 

4 kU, (5.1) ax 

where k is the local wavenumber. In this section it is also assumed that U4 > 4gT 
everywhere. 

Under this assumption, the value of k for capillary-gravity waves will be given by 
(4.3), with k = k,. It is convenient to define the local phase 8 of the wave by k = dO/dx, 
hence 

where $ is the velocity potential in the undisturbed flow. The surface displacement due 
to a point-pressure PS(x - x’) applied at the point x’ > x will be given locally by 

[(x) = a’ sin (el - 8) (8’ > 8), (5.3) 

where U‘ = U(x’), 
2P a’ = 

(U’4 - 4gT)1’2 ’ (5.4) 

as in $4.  To find the amplitude at points x not close to x’ we may use the principle of 
action conservation as follows. 

The wave amplitude a is related to the energy density E by 

The wave action density A is defined by 

A = E/a ,  (5.6) 

where a is the radian frequency, given by g2 = gk+ Tk3. Also, since the waves are 
steady in a frame moving with speed U, a / k  = U. So from (5 .5 )  and (5.6) 
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Now if viscous dissipation is taken into account the differential equation for A takes 
the form 

d 
- [A( U -  c,)] + 4vk2A = 0, 
ax (5.8) 

where cg is the group-velocity and v the kinematic viscosity (see Shyu & Phillips 1990). 
By convention we take cg to be positive, so that c, > U. To solve (5.8) write 

B = A(c,- U ) ,  

B, 

so that (5.8) becomes 
i3B 4vk2 - 
ax (c,- u) 

hence 
B = Bexp(/-dx), 4vk2 

cg- u 
where B’ is a constant. Altogether then 

since dx = d$/U where 4 is the velocity potential. However, from the relation 

we have, on differentiation, 
r - k U = Q ,  

&-U)-kdk dU = 0. 

Since dr/dk = cg it follows that 

U(C,- U )  = UkdU/dk, 

but from (4.3) we can easily find 

UkdUldk = i(U4-4gT)’/2. 

On substituting in (5.12) we have 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

Now dividing by the value of a2 at 4 = 4’ and taking the square root we obtain 

(5.18) 

where for brevity we have written 

D ( 4 )  = (U4-4gT)1’4, D‘ = D(4’). (5.19) 

Altogether from (5.3), (5.4) and (5.18) we find for the displacement 5 due to a point- 
pressure P~(x-x’) at x’ > x:  

(5.20) 
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where (5.21) 

It is simple to generalize this result to a continuous distribution of pressure p,(x) 
acting on the surface of the stream. We simply add the contributions for each point x’ 
downstream of the point x to give 

(5.22) 

6. The critical wave steepness 
We propose now to calculate the capillary-gravity waves generated by the surface- 

tension pressure TK acting on the surface of free Stokes waves. (The curvature K has 
already been found in $42 and 3.) We suppose the waves travel to the left (x decreasing). 
By taking a frame of reference moving with the phase speed, the wave is reduced to a 
steady flow to the right. The speed of the current at the surface (and tangential to it) 
will be denoted by U(s) where s is the arclength measured from a wave crest. The effect 
of the surface curvature K on the propagation of the short waves will be ignored, except 
that the gravitational acceleration g is replaced everywhere by g*(s), see equation (2.3). 
Clearly there are two situations, corresponding to 

(6.1) 

These we shall call ‘resonant’ and ‘non-resonant’, respectively. In the resonant case, k, 
is real, so propagating capillary waves can exist. In the non-resonant case they cannot. 
For Stokes waves of low amplitude every part of the surface is resonant, but for every 
Stokes wave of given length, as the steepness AK is increased a part of the surface near 
the crest becomes non-resonant. At the point where A* = 0 we may say the short 
capillary-gravity waves are ‘blocked’ (see Phillips 1981 ; Shyu & Phillips 1990). 

To illustrate the behaviour of the wavenumber k, and k, in the two cases we show 
in figure 8 two examples of the local wavenumber k,  plotted against the arclength s. In 
both cases the wavelength L equals 8.0 cm. In figure 8(a) the wave is completely 
resonant; short waves may exist at all points of the surface, and energy may be received 
at any point from any other point. 

In figure 8 (b) waves are excluded from the wave crest, and may exist only in a certain 
range AB centred on the wave trough. The points A and B are wave caustics, or 
blocking points, and the capillary-gravity waves are trapped between A and B. 

The critical steepness (AK) ,  of Stokes waves is the value of AK for which steady 
capillary-gravity waves become blocked. For a given wavelength L of the Stokes waves 
it is easy to find (AK),  by the method of 94. Some points calculated in this way are 
shown by the full line in figure 9. 

It will be seen that ( A K ) ,  increases monotonically with L. For large values of L we 
may derive an asymptote from the analytic expressions given in 93. Thus, since 

A* = U4-4g*T 2 0. 

U: = 4 ~ ~ ( g / K ) ~ ,  g,*/g = 0.612, (6.2) 

(where a suffix 0 denotes the value at the crest $ = 0) we see from (6.1) that A,* vanishes 
when 

€4 = 0.612(7), TK2 
(6.3) 



92 M .  S .  Longuet-Higgins 

-10 0 10 

Ks 

-10 0 10 

Ks 

FIGURE 8. Graphs of the wavenumbers k ,  and k,  when L = 8.0 cm. The surface curvature K is shown 
on the same scale. (a) AK = 0.28 (subcritical), (b) AK = 0.34 (supercritical), (c) AK = 0.31 1 (critical). 

or by (3.3) when 

(AK),, ,-AK N 0.391 - (7')"' 
Hence, if T, g and L = 2 x / K  are given in c.g.s. units, we have 

(AK),  = 0.4432 - 0.679L-? (6.5) 

This asymptote is represented by the upper broken curve in figure 9. 

the linearized theory of waves of small steepness we have 
Less rigorously, we may find a rough approximation for lower values of L. For, from 

U, = C- AX = C(1- AK),  

g,* = g - A E 2  = g(l - A K ) ,  
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FIGURE 9. Graph of the critical wave steepness ( A m ,  for blocking of capillary-gravity waves, as a 
function of the wavelength L of the Stokes waves. Broken lines represent the two asymptotes (6.5) 
and (6.9). 

where C and Z denote the speed and the radian frequency of the basic wave. 
Substitution in the condition A* = 0 gives 

4TK2 

g 
(1 - A K ) ~  = -. 

Hence, for the critical steepness we have 

= 1 - 2.29LV3, (6.9) 

L being in cm. This second approximation is shown by the lower dashed curve in 
figure 9. 

It will be convenient to say that Stokes waves whose steepness is less than (AK), are 
‘subcritical ’, while those with steepness greater than ( A Q ,  are ‘ supercritical ’. 

7. Generation of capillary-gravity waves on a Stokes wave: subcritical case 
In the next two sections we shall calculate the generation of parasitic capillary waves 

by the local action of the surface tension force TK on a Stokes wave. 
We suppose that the capillary-gravity waves are sufficiently short that they are 

propagated on the Stokes wave as on a gradually-varying non-uniform stream. The 
analysis of 0 5 will then apply, except that the horizontal coordinate x must be replaced 
by the distance s measured along the free surface, and g must be replaced by the 
effective gravity g*. At each point s the surface tension exerts a pressure p s  = TK(s). 
Hence, as in $4, we may write down the normal displacement 5 due to the pressure 
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applied at all points s‘ downstream of an arbitrary fixed point s. If the surface is 
resonant at all points on the wave, this gives, as in (5.22), 

where 1 D(4)  = ( U4 - 4g* T)1’4, 

and k = (U2+D2)/2T.  For computation it is convenient to separate the integral into 
two parts by expanding the term sin (8’ - 0) and replacing ds‘ by d@’/U($’). Thus 

{(s) = 2T-[[H(4)cos8-G(4)sin0], F($) 
D(4) 

(7.3) 

where 

Note that the function F($) of (7.2) need only be computed once, and may then be used 
both inside and outside the integrals (7.4). 

The nature of the solution is best seen by imagining the water surface to be 
straightened out into a plane. The curvature K(S) then vanishes, but we may apply a 
surface pressure over some localized region, say near s = 0 (corresponding to a wave 
crest). For example, take p s  to be given by (4.8) with P = T. This is the pressure that 
would be exerted by a surface curvature 

1 b  
K(S)  = -- 

x b2 + s2 ’ 

with total change of surface slope 

da = J:m K(s)ds = 1 rad. 

(7.5) 

(7.6) 

Figure 10(a) shows the surface displacement [(x) given by (7.3) in the typical case 
L = 6.82 cm, AK = 0.217 and Kb = 0.1 (the width b is about &th of the wavelength (L).  
The capillary-gravity wave train is mainly upstream of the origin, but the wavelength 
2 z / k  is greatest near the wave crests. The amplitude decays with distance upstream on 
the whole, but with a tendency to be greatest at the wave crests, as a result of the 
radiation stress. The energy from the wave crest at s = 0 spills over onto the rear and 
forward slope of the next crest upstream (Ks = - 2 ~ ) .  The nearest crest downstream 
(Ks = 2x)  contributes very little. 

Figure 10(b) shows a similar picture when the pressure distribution is broadened to 
Kb = 1 .O, on the same scale. The peak ripple amplitude is reduced by a factor of more 
than 10. Moreover, the ripple amplitude generally is reduced relative to the first peak. 
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(b) 0.1 . 1 Kb=l.O 

-10 0 10 

- 10 0 10 

Ks 

FIGURE 10. Surface displacement [(s) induced by the localized pressure distribution (7.5) on a wave 
surface which has been straightened out, but with k and g* appropriate for a Stokes wave having 
L = 6.82 cm, AK = 0.217. (a) Kb = 0.1 ; (b)  Kb = 1.0; (c)  as in (b) but vertical scale enlarged. 

A vertical enlargement (figure 1Oc) shows that there is now a slight contribution from 
the downstream ‘crest’ at Ks = 2n; the pressure p,(s) extends out to this distance. 

Returning now to the curved surface of a Stokes wave, we show in figure 11 (a)  the 
normal displacement @) in the case corresponding to figure 8(a) where L = 8.0 cm. 
Integration has been started from a point (a) two wavelengths to the right. There is 
some slight overlap between the contributions from adjacent waves, but after one wave 
the curve settles down to a steady state. Evidently the ripples are most marked on the 
forward face of the wave. Figure 11 (b) shows the profile of the perturbed Stokes wave. 

Since many optical techniques are designed to measure the surface slope rather than 
the elevation directly, we show in figure ll(c) the corresponding slope dy/dx as a 
function of x. The contribution of the short ripples is now magnified relative to that 
of the underlying gravity wave. 
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FIGURE 11. Computed profiles of (a) the normal displacement t;(s), (b)  the surface elevation y(x), 
and (c) the surface gradient dyldx, in the subcritical case L = 8.0 cm, AK = 0.28. 

Figure 12 shows the dependence of the ripples on gravity wave steepness AK, 
keeping the wavelength L constant. We see there is a marked increase in the ripple 
amplitude as the critical wave steepness is approached. In fact only a slight increase in 
AK,  from 0.28 to 0.30 for example, doubles the ripple steepness. 

We note that the unlimited ripple amplitude as AK+ ( A m ,  is due to the vanishing 
of the denominator D($) in (7.3). (When D($’) is under the integral sign, as in (7.4) the 
infinity is integrated out and the integral stays finite.) This goes back to our use of the 
WKB approximation, which is no longer valid near a wave caustic. In a higher 
approximation (see for example Shyu & Phillips 1990) the infinity would be avoided. 
However, we leave this for a future calculation. 

8. Supercritical waves 
When the Stokes waves are supercritical we can no longer take the integral in (7.1) 

over the whole wave. The infinite limit of integration must be replaced by s1 where s, 
corresponds to a wave caustic. We now have, formally, 
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4 

0 

FIGURE 12. (a) Surface elevation y(x), and (b)  surface slopes dyldx when 
AK = 0.24, 0.26, 0.28 and 0.30 (all subcritical). 

where e and F are redefined so as to avoid singularities: 

e =  l l k d s ,  

and hence 

L = 8.0 cm and 

(8 .1)  
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AK=0.32  

-10 0 10 

Kx 
FIGURE 13. (a) Surface elevation y(x)  and (b) surface slopes dy/dx when L = 8.0 cm and 

AK = 0.32, 0.34 and 0.36 (all supercritical). 

where now 

Again the presence of D(q5’) in the denominator of the integrand causes no problems, 
but when $ tends to the other caustic D($) tends to zero in (8.3), producing a spurious 
infinity. We therefore carry the calculation to within a small but positive distance from 
the caustic. 

Physically, this implies that we do not treat realistically the neighbourhood of the 
second caustic s2 (on the rear slope of the wave), and we neglect the reflection of 
the capillary-gravity waves as gravity waves at that point. In practice, though the 
amplitude of the capillary-gravity waves is much lower at the caustic than on the front 
of the waves, there may be some detectable capillary-gravity activity there. 

The resulting calculations for supercritical Stokes waves of length L = 8.0 cm are 
shown in figure 13. The surface displacements (figure 13a) and slopes (figure 13b) 
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indicate that the surface becomes less rough as the steepness AK increases beyond the 
critical steepness. Together with figure 12 we may conclude that the capillary-gravity 
waves are of maximum amplitude for Stokes waves close to the critical steepness. 

9. Conditions for validity 

of the above analysis. 

it is necessary that 

From table 2 we see that this restricts us to wavelengths L greater than about 5 cm, 
preferably 7 cm. Let us define ?lo by 

Before proceeding further it is appropriate to consider some conditions for validity 

In order that the basic Stokes wave shall be only slightly affected by surface tension 

7' = TK2/g < 1. (9.1) 

T i  = 4g: T / G ,  (9.2) 

where a subscript 0 denotes, as before, the value at the wave crest s = 0. The condition 
for subcriticality may then be written 

Now on using the relations (3.4) and (3.5) we have 

T o  < 1. (9.3) 

T~ = 0 .78~ /~ ' .  

Hence the condition (9.3) is equivalent to 

(9.4) 

7 < 1 . 2 8 ~ ~ .  (9.5) 

(9 * 6) 
by 

cf. equation (4.3). In order that the short-wave approximation shall apply to the 
capillary waves at the crest, it is necessary that k ,  shall be large compared to the crest 
curvature R-l where R = 5.155e2/K(see Longuet-Higgins & Fox 1977). Since by (9.6) 
k ,  is of order Ui/T this implies that 

In terms of the parameter yo, the two wavenumbers k l / k z  at the wave crest are given 

k,, k ,  = (Ui/2T) [1 k (1 -T31'21, 

5.1556' % K T / U i  = y2/2e2, (9.7) 

hence y 4 3.2, (9.8) 
consistently with (9.1). 

Another basic condition is that near the crest we have 

(9.9) 

(9.10) 

But near the crest k ,  is of order U i / T  and ay/as is of order f. Hence the condition is 
satisfied if 

that is to say 

(9.11) 

(9.12) q: G 8g*/g = 4.9, 

which also is consistent with (9.3). 
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L(cm) 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
12.0 
15.0 
20.0 

r2 
0.1207 
0.0838 
0.0616 
0.0472 
0.0373 
0.0302 
0.0210 
0.0134 
0.0075 

( A K ) ,  
0. I846 
0.2445 
0.2837 
0.31 12 
0.3313 
0.3467 
0.3683 
0.3826 
0.4054 

TABLE 2. Values of vZ = TK2/g  and of the critical wave steepness ( A K ) ,  for different wavelengths L. 

Note that when 71; is small, then by (9.6) 

k2/k, = 271; % 1, (9.13) 

so that the contributions of the two waves are dynamically well separated. 
A second kind of criterion concerns the damping of the parasitic capillaries. For a 

clear understanding of the phenomenon it is desirable that the capillaries be effectively 
damped out over a distance comparable to one wavelength of the basic gravity wave. 
By $7 this implies that 

exp ( - 2vk; L/  U )  < 0.05, (9.14) 

say, or 2vkf L / U  > 3. (9.15) 

Here L is the wavelength (27~/K) and U is a representative value of the surface stream 
velocity. We may take U as the phase-speed (g/K)'I2 and the capillary wavenumber k, 
as U 2 / T .  Then the condition (9.15) is equivalent to 

(9.16) 

In c.g.s. units the right-hand side of (9.15) equals 22 cm-5/2, implying that 

L = 27r/K> 11.7cm. (9.17) 

In other words, at basic wavelengths less than about 12 cm there may be appreciable 
interference between the capillary waves generated at adjacent crests of the basic wave. 

10. Experiments by Cox (1958) 
The first detailed measurements of the slopes of parasitic capillary waves were made 

by Cox (1958). His observations were made on plunger-generated waves in a short 
(6.1 m) wave tank both with and without wind. Although the direct effects of wind on 
the capillary waves may have been slight at most lower wind speeds we here confine 
attention to the observations where the wind speed was zero (see figure 14a). 

The average period 7 of the gravity waves is 0.202 s, but evidently the wave height 
was not completely uniform. This may have been due to reflection of energy from the 
far end of the tank, or to some inherent instability of the waves. Moreover, the time 
taken for the ripples to propagate over one wavelength of the gravity wave being longer 
than a wave period, the shorter waves were not always in a steady state. 

Cox measured the surface slope at a fixed horizontal position as a function of time. 
The one enlarged record is his figure 11, here reproduced as figure 14(b). By drawing 
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FIGURE 14. Time-trace of surface slope dy/dx in mechanically generated waves, period 0.202 s, 
without wind. (a) A sequence of waves; (b) details of the fourth wave in (u) [after Cox 19581; (c) the 
wave slope dy/dx calculated by the method of $8 when L = 6.5 cm. AK = 0.36 and v = 0.012. 



102 M .  S .  Longuet-Higgins 

a smoothed curve through the experimental trace we infer a value 0.406 for the slope- 
amplitude of the underlying gravity wave (that is half the difference between the 
maximum and minimum slopes). Interpolating in table 1, we find this corresponds to 
a wave with steepness parameter A K =  0.366. The corresponding wave speed c is 
1.069 g~/27c and hence the wavelength L = c7 = 6.81 cm approximately. (We have 
neglected the possible effect of surface tension on the overall wave speed.) 

From figure 9 we see that the gravity wave is supercritical. The corresponding 
surface profile, from the theory of 58, is shown in figure 14(c), assuming that the 
kinematic viscosity u has its expected value 0.012 cm2 s-l. When the position of the 
ripple crests in figure 14(b) and 14(c) are compared, it will be seen that they agree quite 
satisfactorily. As for the amplitudes, there are two points of disagreement. The 
measured amplitude of the first (i.e. right-hand) ripple is somewhat less than predicted. 
This is not surprising in view of our approximate treatment of the waves near a caustic. 
The second main discrepancy is that for negative slopes the measured capillary-gravity 
waves appear more highly damped than in the theory. This could be because the 
capillary-gravity wavetrain was unsteady and energy was still being propagated to the 
lower part of the longer wave. Note that for ripples, the ratio of the group velocity cg 
to the phase velocity c is less than g, hence the velocity of energy propagation against 
the current is less than ac and the time for the capillary wave energy to propagate over 
a distance iL  is greater than one wave period. 

11. Observations by Perlin et al. (1993) 
Perlin et af. (1993) observed plunger-generated waves at two fixed frequencies: 5.26 

and 4.21 Hz. They measured essentially the surface displacement at a given instant of 
time, over a distance of a few wavelength from the wavemaker. From their figures 9 
and 12 it is immediately clear that the capillary waves changed considerably over that 
distance. Generally, the further the gravity wave from the wavemaker, the smaller the 
amplitude of the ripples. It is therefore permissible to doubt whether the gravity waves 
were steady, since at finite amplitude a wavemaker generally creates higher harmonics 
of the gravity wave, which propagate freely over the fundamental wave. At the crest 
of the fundamental wave the higher harmonics are amplified by the orbital motion of 
the fundamental, as is well understood (see Longuet-Higgins & Stewart 1964) so that 
the wave crests are especially variable close to the wavemaker and take a few 
wavelengths to settle down. There may also be some capillary waves generated at the 
wavemaker itself, by the action of surface tension and viscosity. 

Figure 15(a) is the profile of a 5.26 Hz wave shown as figure 7(a) of Perlin et af. 
(1993). Taking the wave height 2A as 0.47 cm and the wavelength L as 6.82 cm we have 
A K =  27cA/L = 0.217. Inserting these parameters in the analysis of 97 we find the 
surface profile shown in figure 15 (b). Comparing this with figure 15 (a)  we see that the 
positions of the ripple crests correspond quite closely. The ripple amplitude is smaller 
than observed (by about 50%) near the crest of the wave, but is of about the same 
magnitude as observed in the wave trough. Reference to figure 10, at the same 
wavelength L = 6.82, suggests that there may well have been an overspill of energy 
from the previous wave. 

We come now to the experiments at 4.21 Hz. Figure 11 of Perlin et af. represents the 
surface profile at a distance of 1-2 wavelengths from the wavemaker. From this we see 
that the wave height 2A was 0.82cm and the wavelength L about 10.2cm, giving 
AK = 0.25. The waves were therefore strongly subcritical. It is quite clear, however, 
that in their figure 11, which is used to compare with previous theory, the waves were 
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FIGURE 15. (a)  The profile of a wave at 5.26 Hz as recorded by Perlin et al. (1957) figure 7(a). 
(b)  The profile calculated by $7 with L = 6.82 cm, AK = 0.227. 
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FIGURE 16. The theoretical profile for a wave with L = 10.2 cm, AK = 0.25, by the method of $7. 

not yet steady. For on p. 617 they state, 'The lower-frequency gravity wavetrain 
experiences a more rapid decrease in the parasitic capillaries, which are almost non- 
existent by 2.5 wavelengths downstream.' In other words, if in figure 1 1  they had shown 
the wave profile at 2.5 wavelengths downstream where it was presumably more steady, 
the parasitic capillaries would have been negligible. 

This is confirmed by inserting the above parameters for the waves in the analysis of 
$7,  which yields the profile shown in figure 16. In this, the parasitic capillaries are 
indeed so small as to be practically invisible. 

12. Observations by Ebuchi et al. (1987) 
It is interesting to contrast the observations of Perlin et al. (1993) with those of 

Ebuchi et al. (1987), here reproduced as figure 17(a). The latter observations were 
made in the presence of a wind of 6 m s-' and with a fetch of 6 m. The wavelength was 
about 10 cm, quite comparable with the measurements at 4.21 Hz by Perlin et al., but 
the wave steepness was much greater, about 0.335. As shown by Ebuchi er al. the crests 
of the gravity waves were regions of high vorticity. In figure 17(b) we show the 
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capillary-gravity waves produced by an irrotational wave with L = 10 cm, AK = 
0.335. The ripples are very similar to these shown in figure 17(a), there being about 20 
ripples between the wave trough and the point on the profile corresponding to the toe 
of the roller. 

As pointed out in Longuet-Higgins (1992), the main action of the wind in the 
experiments by Ebuchi et al. was to put energy into the gravity waves (perhaps mainly 
by normal pressure on the surface) and steepen them to the point where parasitic 
capillaries were generated. The high rate of damping of the capillary waves was shown 
to produce enough rectified vorticity to account for the turbulence in the gravity wave 
crests, and to sustain the crest ‘roller’. 

At still greater wavelengths (0.5-2.0 m) experiments by Duncan et al. (1994) have 
confirmed that the crest of a steep Stokes wave is inherently unstable, and tends to be 
thrown forward, in accordance with theoretical calculations by Longuet-Higgins, 
Cleaver & Fox (1994). This instability also contributes to the formation of a ‘toe’ or 
point of sharp curvature on the forward face of the wave, and hence the production of 
parasitic capillaries. A similar instability may contribute to the asymmetry of the crests 
in figure 17, at a shorter wavelength. 
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13. Discussion and conclusions 
To render the calculations practicable we have made a number of significant 

approximations : 
1. To a first approximation, the waves are assumed to be steady, irrotational gravity 

waves. 
2. In the perturbation due to capillarity we have considered only the resonant 

capillary-gravity component. The gravity-capillary component and the localized 
‘transient’ (see figure 7a) are both neglected. 

3. The capillary-gravity waves are supposed linear (i.e. of small steepness) so that 
we may superpose the contributions arising from different parts of the free surface. 

4. We use the WKB approximation except very close to the ‘blocking points’ or 
caustics, hence the neighbourhood of blocking points is not well represented. (This 
difficulty does not of course arise for subcritical waves.) 

5. We have neglected the reaction of the capillary waves on the basic flow. In a 
second approximation this would have to be included. 

6. We have assumed the flow is steady, although there is some evidence of 
unsteadiness in the experiments. The waves can only be steady in a first approximation; 
complete steadiness would require some input of energy from the wind, or a gradual 
decay of the gravity waves with horizontal distance. 

Nevertheless our results reveal some of the essential physics of capillary wave 
generation: (a) They appear to originate from regions of sharp curvature of the 
(unperturbed) surface profile. (b) Stokes waves of a given wavelength L are two kinds : 
subcritical, in which the generation of parasitic capillaries can occur at all points of the 
surface, and supercritical, in which capillary-gravity generation occurs only in the 
wave troughs between two wave caustics. ( c )  The critical value (AK) ,  of the gravity 
wave steepness, dividing subcritical from supercritical waves, has been accurately 
calculated. ( d )  The amplitude of the parasitic capillaries, hence the damping of the 
gravity waves, is greatest when the gravity waves are close to their critical steepness, 
i.e. when AK N (AK) , .  Evidently the damping of a Stokes wave is a highly nonlinear 
function of its steepness, as pointed out by Longuet-Higgins (1963). 

The present theory accounts fairly well for the measurements of surface slopes by 
Cox (1958) especially taking into account the probable unsteadiness of the steep waves 
in his experiments. The theory also agrees with the observations by Perlin et al. (1993), 
although we have noted some discrepancies in their presentation of their own data (see 
0 11, para 3). The experiments by Ebuchi et al. (1987) can also be accounted for. It is 
not possible to assess the data quoted by Ruvinsky et al. (1991) without further details 
of their experimental set-up. The generation of parasitic capillaries is a delicate 
phenomenon in which great experimental care is necessary. 

The length of the gravity wave is a highly relevant parameter. For wavelengths L less 
than about 8 cm the overlap of capillary-gravity waves generated on adjacent gravity 
waves can be appreciable for subcritical waves. In the supercritical case we would 
expect to see some capillary-wave activity near the caustic on the rear face of the Stokes 
wave, as well as on the front face. For wavelengths L above 10 cm the broadness of the 
wave crest tends to iron out the capillary-gravity waves, in the subcritical case. 
However, natural instabilities of the wave crest (Longuet-Higgins et al. 1994) tend to 
produce a sharp discontinuity of slope on the forward face, leading to a very localized 
source of parasitic capillaries. This process is helped by the generation of vorticity by 
the capillaries themselves (Longuet-Higgins 1992). It is desirable to consider further the 
effects of viscosity on steep gravity waves, through the production of vorticity by the 
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parasitic capillaries. The possibility of steady solutions with input of energy from the 
wind should be investigated. Calculations of the present type could also be extended 
to unsteady Stokes waves, such as those occurring in focused wave packets or in wave 
groups, and ultimately to waves in three dimensions. 

The present work has been supported by the Office of Naval Research under ONR 
Grant NO00 14-94-1-0008. 
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